Tight Weyl-Heisenberg frames in l2(Z)

نویسندگان

  • Zoran Cvetkovic
  • Martin Vetterli
چکیده

Tight Weyl–Heisenberg frames in `(Z) are the tool for short-time Fourier analysis in discrete time. They are closely related to paraunitary modulated filter banks and are studied here using techniques of the filter bank theory. Good resolution of short-time Fourier analysis in the joint time–frequency plane is not attainable unless some redundancy is introduced. That is the reason for considering overcomplete Weyl–Heisenberg expansions. The main result of this correspondence is a complete parameterization of finite length tight Weyl–Heisenberg frames in ` 2(Z) with arbitrary rational oversampling ratios. This parameterization follows from a factorization of polyphase matrices of paraunitary modulated filter banks, which is introduced first.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . FA ] 3 0 D ec 1 99 8 CLASSIFYING TIGHT WEYL - HEISENBERG FRAMES

Abstract. A Weyl-Heisenberg frame for L(R) is a frame consisting of translates and modulates of a fixed function in L(R), i.e. (EmbTnag)m,n∈Z , with a, b > 0, and g ∈ L(R). In this paper we will give necessary and sufficient conditions for this family to form a tight WH-frame. This allows us to write down explicitly all functions g so that (EmbTnag) is an orthonormal basis for L (R). These resu...

متن کامل

Plancherel transform criteria for Weyl-Heisenberg frames with integer oversampling

We investigate the relevance of admissibility criteria based on Plancherel measure for the characterization of tight Weyl-Heisenberg frames with integer oversampling. For this purpose we observe that functions giving rise to such Weyl-Heisenberg frames are admissible with regard to the action of a suitably defined type-I discrete group G. This allows to relate the construction of Weyl-Heisenber...

متن کامل

h . FA ] 2 4 N ov 1 99 8 Weyl - Heisenberg frames for subspaces of L 2 ( R )

AWeyl-Heisenberg frame {EmbTnag}m,n∈Z = {eg(·−na)}m,n∈Z for L2(R) allows every function f ∈ L2(R) to be written as an infinite linear combination of translated and modulated versions of the fixed function g ∈ L2(R). In the present paper we find sufficient conditions for {EmbTnag}m,n∈Z to be a frame for span{EmbTnag}m,n∈Z , which, in general, might just be a subspace of L2(R) . Even our conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 46  شماره 

صفحات  -

تاریخ انتشار 1998